【奈良市オープンデータ活用】AIによる地目分類の教師データ作成とモデル登録までの道のり
地目分類というと、従来は現地調査や紙図面による手作業が中心でした。しかし、近年ではAIとGIS技術の進化により、地目の自動分類が現実のものとなりつつあります。本記事では、奈良市が公開しているオープンデータを活用し、地目分類AIを構築する過程を紹介します。特に焦点を当てたのは、AIモデルの核となる「教師データ」の作成プロセスと、それをAIに学習させて運用可能な分類器として登録するまでの工程です。教師データとは、AIに「これは何か」を教えるための正解付きデータです。本プロジェクトでは、空中写真や地番図といった奈良市のオープンデータを組み合わせ、手動による精密なアノテーションを行い、高精度な教師データを作成しました。これにより、田・畑・宅地・山林・雑種地といった主要な地目をAIが高い精度で識別可能になります。AIモデルの学習にはPyTorchを利用し、空中写真と地番ポリゴンの対応関係をもとにCNN(畳み込みニューラルネットワーク)を構築。最終的にはGeoJSON形式で分類結果を出力する仕組みを整備しました。これにより、地目分類結果をQGISなどのGISソフトで可視化・検証できるようになっています。この記事では、教師データ作成・AI学習・分類結果の出力までを、因果・対比・同等という3つの論理構造で整理。従来の手作業との比較、教師データの質と精度の因果関係、そして人とAIの役割分担の同等性についても掘り下げています。また、プロジェクトで用いたコードやモデルはGitHubで公開されており、他自治体や研究機関が自由に応用できるよう設計されています。都市計画、農地管理、災害対策など、幅広い応用が期待される地目分類AI。その第一歩として、本記事が実務と技術の架け橋となることを目指しています。#奈良市 #オープンデータ #教師データ #AI活用 #地目分類 #QGIS #PyTorch #都市管理 #地図AI #GitHub公開